
ar
X

iv
:0

80
9.

29
78

v1
 [

cs
.S

C
]

 1
7

Se
p

20
08

A Local Construction of the Smith Normal

Form of a Matrix Polynomial

Jon Wilkening

Department of Mathematics, University of California, Berkeley, CA 94720-3840, USA

Jia Yu

Department of Mathematics, University of California, Berkeley, CA 94720-3840, USA

Abstract

We present an algorithm for computing a Smith form with multipliers of a regular matrix
polynomial over a field. This algorithm differs from previous ones in that it computes a local
Smith form for each irreducible factor in the determinant separately and then combines them
into a global Smith form, whereas other algorithms apply a sequence of unimodular operations
to the original matrix row by row (or column by column). The performance of the algorithm in
exact arithmetic is reported for several test cases.

Key words: Matrix polynomial, canonical forms, Smith form, Jordan chain, symbolic
computation

AMS subject classifications. 68W30, 15A21, 11C20, 11C08

1. Introduction

Canonical forms are a useful tool for classifying matrices, identifying their key proper-
ties, and reducing complicated systems of equations to the de-coupled, scalar case. When
working with matrix polynomials over a field K, one fundamental canonical form, the
Smith form, is defined. It is a diagonalization

A(λ) = E(λ)D(λ)F (λ) (1)

of the given matrix A(λ) by unimodular matrices E(λ) and F (λ) such that the diagonal
entries di(λ) of D(λ) are monic polynomials and di(λ) is divisible by di−1(λ) for i ≥ 2.

⋆ The authors were supported in part by the Director, Office of Science, Computational and Technology
Research, U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Email addresses: wilken@math.berkeley.edu (Jon Wilkening), jiay@math.berkeley.edu (Jia Yu).

Preprint submitted to Elsevier 17 September 2008

http://arXiv.org/abs/0809.2978v1

This factorization has various applications. The most common one [3] involves solving
the system of differential equations

A(q) dqx

dtq
+ · · · + A(1) dx

dt
+ A(0)x = f(t), (2)

where A(0), . . . , A(q) are n × n matrices over C. For brevity, we denote this system by
A(d/dt)x = f , where A(λ) = A(0) +A(1)λ+ · · ·+A(q)λq. Assume for simplicity that A(λ)
is regular, i.e. det(A(λ)) is not identically zero, and that (1) is a Smith form of A(λ).
The system (2) is then equivalent to




d1(
d
dt

)

. . .

dn(d
dt

)







y1

...

yn


 =




g1

...

gn


 ,

where y = F (d/dt)x(t) and g = E−1(d/dt)f(t). Note that E−1(λ) is a matrix polynomial
over C due to the unimodularity of E(λ). This system splits into n independent scalar
ordinary differential equations

di

(d

dt

)
yi(t) = gi(t), 1 ≤ i ≤ n,

and the solution of (2) is then given by x = F−1(d/dt)y, where F−1(λ) is also a matrix
polynomial over C.

Smith forms of linear matrix polynomials are also related to the concept of similarity
of matrices. A fundamental theorem in matrix theory states that two square matrices A
and B over a field K are similar if and only if their characteristic matrix polynomials
λI − A and λI − B have the same Smith form D(λ). [1, 3].

Other applications of this canonical form include finding the Frobenius form of a
matrix A over a field by computing the invariant factors of the linear matrix polynomial
λI − A [13, 15].

The computation of Smith forms of matrices over Q[λ] is a widely studied topic. Kan-
nan [8] gave a method for computing the Smith form with repeated triangularizations of
the matrix polynomial over Q. Kaltofen, Krishnamoorthy and Saunders [6] gave the first
polynomial time algorithm for the Smith form (without multipliers) using the Chinese
remainder theorem. A new class of probabilistic algorithms (the Monte Carlo algorithms)
were proposed by Kaltofen, Krishnamoorthy and Saunders [6, 7]. They showed that by
pre-multiplying the given matrix polynomial by a randomly generated constant matrix on
the right, the Smith form with multipliers is obtained with high probability by two steps
of computation of the Hermite form. A Las Vegas algorithm given by Storjohann and
Labahn [10, 11] significantly improved the complexity by rapidly checking the correct-
ness of the result of the KKS algorithm. Villard [12, 14] established the first deterministic
polynomial-time method to obtain the Smith form with multipliers by explicitly com-
puting a good-conditioning matrix that replaces the random constant matrix in the Las
Vegas algorithm. He also applied the method in Marlin, Labhalla and Lombardi [9] to
obtain useful complexity bounds for the algorithm.

We propose a new deterministic algorithm for the computation of Smith forms of
matrix polynomials over a field in Section 3. Our approach differs from previous methods
in that we begin by constructing local diagonal forms that we later combine to obtain

2

a (global) post-multiplier. Since we do not discuss complexity bounds, we compare the
performance of our algorithm to Villard’s method with good conditioning in Section 4,
and discuss the reasons for the increase in speed. In Appendix A, we present a parallel
algebra theory that connects this work to [16], and give a variant of the algorithm in
which all operations are done in the field K rather than manipulating polynomials as
such.

2. Preliminaries

In this section, we describe the theory of Smith forms of matrix polynomials over a
field K, which follows the definition in [3] over C. We also give a brief review of the
theory of Jordan chains as well as Bézout’s identity, which play an important role in our
algorithm for computing Smith forms of matrix polynomials.

2.1. Smith Forms

Suppose A(λ) =
∑q

k=0 A(k)λk is an n × n matrix polynomial, where A(k) are n × n
matrices whose entries are in a field K. Assuming that A(λ) is regular, i.e. the determinant
of A(λ) is not identically zero, the following theorem is proved in [3] (for K = C).

Theorem 1. There exist matrix polynomials E(λ) and F (λ) over K of size n× n, with
constant nonzero determinants, such that

A(λ) = E(λ)D(λ)F (λ), D(λ) = diag[d1(λ), . . . , dn(λ)], (3)

where D(λ) is a diagonal matrix with monic scalar polynomials di(λ) over K such that
di(λ) is divisible by di−1(λ).

Since E(λ) and F (λ) have constant nonzero determinants, (3) is equivalent to

U(λ)A(λ)V (λ) = D(λ), (4)

where U(λ) := (E(λ))−1 and V := (F (λ))−1 are also matrix polynomials over K.

Definition 2. The representation in (3) or (4), or often D(λ) alone, is called a Smith
form of A(λ). Square matrix polynomials with constant nonzero determinants like E(λ)
and F (λ) are called unimodular.

The diagonal matrix D(λ) in the Smith form is unique, while the representation (3)
is not. Suppose that

∆(λ) := det(A(λ)) (5)

can be decomposed into prime elements p1(λ), . . . , pl(λ) in the principal ideal domain

K[λ], that is, ∆(λ) = c
∏l

j=1 pj(λ)κj with κj a positive integer and c ∈ K \ {0}. Then
the di(λ) are given by

di(λ) =

l∏

j=1

pj(λ)κji , (1 ≤ i ≤ n)

for some integers 0 ≤ κj1 ≤ · · · ≤ κjn satisfying
∑n

i=1 κji = κj for j = 1, . . . , l.
We now define a local Smith form for A(λ) at p(λ). Let p(λ) = pj(λ) be one of the

irreducible factors of ∆(λ) and define αi = κji, µ = κj . Generalizing the case that
p(λ) = λ − λj , we call µ the algebraic multiplicity of p(λ).

3

Theorem 3. Suppose A is an n × n matrix over K[λ] and p(λ) is an irreducible factor
of ∆(λ). There exist n × n matrix polynomials E(λ) and F (λ) such that

A(λ) = E(λ)D(λ)F (λ), D(λ) =




p(λ)α1 0

. . .

0 p(λ)αn


 , (6)

where 0 ≤ α1 ≤ · · · ≤ αn are nonnegative integers and p(λ) does not divide det[E(λ)] or
det[F (λ)].

E(λ) and F (λ) are not uniquely determined in a local Smith form. In particular, we
can always choose F (λ) to be unimodular by absorbing the missing parts of D(λ) in
Theorem 1 into E(λ). Then the local Smith form of A(λ) at p(λ) is given by

A(λ)V (λ) = E(λ)D(λ), (7)

where V (λ) := F (λ)−1 is a matrix polynomial.

2.2. Jordan Chains

Finding a local Smith form of a matrix polynomial over C at p(λ) = λ−λ0 is equivalent
to finding a canonical system of Jordan chains [2, 16] for A(λ) at λ0. We now generalize
the notion of Jordan chain to the case of an irreducible polynomial over a field K.

Definition 4. Suppose A(λ) is an n × n matrix polynomial over a field K and p(λ) is
irreducible in K[λ]. A vector polynomial x(λ) ∈ K[λ] of the form

x(λ) = x(0)(λ) + p(λ)x(1)(λ) + · · · + p(λ)α−1x(α−1)(λ) (8)

with deg x(k)(λ) < s := deg p(λ) and α ≥ 1, is called a Jordan chain of length α for A(λ)
at p(λ) if

A(λ)x(λ) = O(p(λ)α) (9)

and x(0)(λ) 6≡ 0. The meaning of (9) is that each component of A(λ)x(λ) is divisible by
p(λ)α. Any vector polynomial x(λ) satisfying (9) such that p(λ) ∤ x(λ) is called a root
function of order α for A(λ) at p(λ). We generally truncate or zero-pad x(λ) to have α
terms in an expansion in powers of p(λ) when referring to it as a Jordan chain. If K can
be embedded in C, (9) implies that over C, x(λ) is a root function of A(λ) of order α at
each root λj of p(λ) simultaneously.

Definition 5. Several vector polynomials {xj(λ)}ν
j=1 form a system of root functions at

p(λ) if

A(λ)xj(λ) = O(p(λ)αj), (αj ≥ 1, 1 ≤ j ≤ ν)

the set {ẋj(λ)}ν
j=1 is linearly independent in M/pM over R/pR,

where R = K[λ], M = Rn, ẋj = xj + pM .

(10)

It is called canonical if (1) ν = dimker Ȧ, where Ȧ is the linear operator on M/pM
induced by A; (2) x1(λ) is a root function of maximal order α1; and (3) for i > 1, xi(λ) has
maximal order αi among all root functions x(λ) ∈ M such that ẋ is linearly independent
of ẋ1, . . . , ẋi−1 in M/pM . The integers α1 ≥ · · · ≥ αν are uniquely determined by A(λ).

4

Definition 6. An extended system of root functions x1(λ),. . . ,xn(λ) is a collection of
vector polynomials satisfying (10) with ν replaced by n and αj allowed to be zero. The
extended system is said to be canonical if, as before, the orders αj are chosen to be
maximal among root functions not in the span of previous root functions in M/pM ;
the resulting sequence of numbers α1 ≥ · · · ≥ αν ≥ αν+1 = · · · = αn = 0 is uniquely
determined by A(λ).

Given such a system (not necessarily canonical), we define the matrices

V (λ) = [x1(λ), . . . , xn(λ)], (11)

D(λ) = diag[p(λ)α1 , . . . , p(λ)αn], (12)

E(λ) = A(λ)V (λ)D(λ)−1 . (13)

All singularities of E(λ) are clearly removable. The following theorem shows that aside
from a reversal of the convention for ordering the αj , finding a local Smith form is
equivalent to finding an extended canonical system of root functions:

Theorem 7. The following three conditions are equivalent:
(1) the columns xj(λ) of V (λ) form an extended canonical system of root functions for

A(λ) at p(λ) (up to a permutation of columns).
(2) p(λ) ∤ det[E(λ)].
(3)

∑n

j=1 αj = µ, where µ is the algebraic multiplicity of p(λ) in ∆(λ).

This theorem is proved e.g. in [2] for the case that K = C. The proof over a general
field K is identical, except that the following lemma is used in place of invertibility of
E(λ0). This lemma also plays a fundamental role in our construction of Jordan chains
and local Smith forms.

Lemma 8. Suppose K is a field, p is an irreducible polynomial in R = K[λ], and
E = [y1, . . . , yn] is an n × n matrix with columns yj ∈ M = Rn. Then p ∤ det(E) ⇔
{ẏ1, . . . , ẏn} are linearly independent in M/pM over R/pR.

Proof. The ẏj are linearly independent iff the determinant of Ė (considered as an n× n
matrix with entries in the field R/pR) is non-zero. But

det Ė = detE + pR, (14)

where detE is computed over R. The result follows. 2

2.3. Bézout’s Identity

As K[λ] is a principal ideal domain, Bézout’s Identity holds, which is our main tool
for combining local Smith forms into a single global Smith form. We define the notation
gcd(f1, . . . , fl) to be 0 if each fj is zero, and the monic greatest common divisor (GCD)
of f1, . . . , fl over K[λ], otherwise.

Theorem 9. (Bézout’s Identity) For any two polynomials f1 and f2 in K[λ], where K
is a field, there exist polynomials g1 and g2 in K[λ] such that

g1f1 + g2f2 = gcd(f1, f2). (15)

Bézout’s Identity can be extended to combinations of more than two polynomials:

5

Theorem 10. (Generalized Bézout’s Identity) For any scalar polynomials f1, . . . , fl in
K[λ], there exist polynomials g1, . . . , gl in K[λ] such that

l∑

j=1

gjfj = gcd(f1, . . . , fl).

The polynomials gj are called extended greatest common divisors of {f1, . . . , fl}.

In particular, suppose we have l distinct prime elements {p1, . . . , pl} in K[λ], and

fj is given by fj =
∏l

k 6=j pβk

k , where β1, . . . , βl are given positive integers and the

notation
∏l

k 6=j indicates a product over all indices k = 1, . . . , l except k = j. Then
gcd (f1, . . . , fl) = 1, and we can find g1, . . . , gl over K[λ] such that

l∑

j=1

gjfj = 1. (16)

In this case, the extended greatest common divisors gj are uniquely determined by re-
quiring deg(gj) < sjβj , where sj = deg(pj). The formula (16) modulo pk shows that gk

is not divisible by pk.

3. An Algorithm for Computing a (global) Smith Form

In this section, we describe an algorithm for computing a Smith form of a regular
n×n matrix polynomial A(λ) over a field K. We have in mind the case where K = C, R,
Q or Q + iQ ⊂ C, but the construction works for any field. The basic procedure follows
several steps, which will be explained further below:
• Step 0. Compute ∆(λ) = detA(λ) and decompose it into irreducible factors

∆(λ) = const ·p1(λ)κ1 . . . pl(λ)κl . (17)

• Step 1. Compute a local Smith form

A(λ)Vj(λ) = Ej(λ)




pj(λ)κj1 0

. . .

0 pj(λ)κjn


 (18)

for each factor pj(λ) of ∆(λ).

• Step 2. Find a linear combination Bn(λ) =
∑l

j=1 gj(λ)fj(λ)Vj(λ) using extended

GCDs of fj(λ) =
∏l

k 6=j pj(λ)κkn so that the columns of Bn(λ) form an extended
canonical system of root functions for A(λ) with respect to each pj(λ).

• Step 3. Eliminate extraneous zeros from det
[
A(λ)Bn(λ)

]
by finding a unimodular

matrix V (λ) such that B1(λ) = V (λ)−1Bn(λ) is lower triangular. We will show that
A(λ)V (λ) is then of the form E(λ)D(λ) with E(λ) unimodular and D(λ) as in (3).
Note that the diagonal entries in the matrix polynomial D(λ) are given by

di(λ) =

l∏

j=1

pj(λ)κji , i = 1, . . . , n

6

once we know the local Smith forms. This allows us to order the columns once and for

all in Step 2.

3.1. A Local Smith Form Algorithm (Step 1)

In this section, we show how to generalize the construction in [16] (for finding a

canonical system of Jordan chains for an analytic matrix function A(λ) over C at λ0 = 0)

to finding a local Smith form for a matrix polynomial A(λ) with respect to an irreducible

factor p(λ) of ∆(λ) = det[A(λ)]. The new algorithm reduces to the “exact arithmetic”

version of the previous algorithm when p(λ) = λ. In Appendix A, we present a variant

of the algorithm that is easier to implement than the current approach, and is closer in

spirit to the construction in [16], but is less efficient by a factor of s = deg p.

Our goal is to find matrices V (λ) and E(λ) such that p(λ) does not divide det[V (λ)]

or det[E(λ)], and such that

A(λ)V (λ) = E(λ)D(λ), D(λ) = diag[p(λ)α1 , . . . , p(λ)αn], (19)

where 0 ≤ α1 ≤ · · · ≤ αn. In our construction, V (λ) will be unimodular, which reduces

the work in Step 3 of the high level algorithm, the step in which extraneous zeros are

removed from the determinant of the combined local Smith forms.

We start with V (λ) = In×n and perform a sequence of column operations on V (λ)

that preserve its determinant (up to a sign) and systematically increase the orders αi in

D(λ) in (19) until det[E(λ)] no longer contains a factor of p(λ). This can be considered

a “breadth first” construction of a canonical system of Jordan chains, in contrast to the

“depth first” procedure described in Definition 5.

The basic algorithm is presented in Figure 1. Here R = K[λ] is a principal ideal

domain and M = Rn is a free R-module of rank n:

R = K[λ], M = Rn. (20)

Since p is irreducible, R/pR is a field and M/pM is a vector space over this field. We

adopt C notation for integer arithmetic and use / and % to denote the quotient and

remainder of polynomials:

g = f/p, r = f % p ⇔ f = gp + r, deg r < deg p. (21)

The idea of the algorithm is to run through the columns of V in turn and “accept”

columns whenever the leading term of the residual A(λ)xi(λ) is linearly independent of

its predecessors; otherwise we find a linear combination of previously accepted columns to

cancel this leading term and cyclically rotate the column to the end for further processing.

Note that for each k, we cycle through each unaccepted column exactly once: after

rotating a column to the end, it will not become active again until k has increased by

one. At the start of the while loop, we have the invariants

(1) Axm is divisible by pk, (i ≤ m ≤ n).

(2) Axm = pαmym + O(pαm+1), (1 ≤ m < i).

(3) if i ≥ 2 then {ẏm}i−1
m=1 is linearly independent in M/pM over R/pR.

The third property is guaranteed by the if statement, and the second property follows

from the first due to the definition of αi and yi in the algorithm. The first property is

7

Algorithm 1. (Local smith form, preliminary version)

k = 0, i = 1, V = [x1, . . . , xn] = In×n

while i ≤ n
rk−1 = n + 1 − i rk−1 := dim. of space of J. chains of length ≥ k
for j = 1, . . . , rk−1

yi = (Axi/pk)% p define yi so Axi = pkyi + O(pk+1)
if the set {ẏ1, . . . , ẏi} is linearly independent in M/pM over R/pR

αi = k, i = i + 1 accept xi and yi, define αi

else

find ȧ1, . . . , ȧi−1 ∈ R/pR so that ẏi −
∑i−1

m=1 ȧmẏm = 0̇

⋆ x
(new)
i = x

(old)
i −

∑i−1
m=1 pk−αmamxm

tmp = xi, xm = xm+1, (m = i, . . . , n − 1), xn = tmp
end if

end for j
k = k + 1

end while
β = k − 1, rβ = 0 β := αn = maximal Jordan chain length

Fig. 1. Algorithm for computing a local Smith form.

obviously true when k = 0; it continues to hold each time k is incremented due to step ⋆,

after which Ax
(new)
i is divisible by pk+1:

Ax
(old)
i −

i−1∑

m=1

pk−αmamAxm = pkyi + O(pk+1) −

i−1∑

m=1

pk−αmam

(
pαmym + O(pαm+1)

)

= pk
(
yi −

i−1∑

m=1

amym

)
+ O(pk+1) = O(pk+1).

This equation is independent of which polynomials am ∈ R are chosen to represent
ȧm ∈ R/pR, but different choices will lead to different (equally valid) Smith forms; in
practice, we choose the unique representatives such that deg am < s, where

s = deg p. (22)

This choice of the am leads to two additional invariants of the while loop, namely
(4) deg xm ≤ max(sk − 1, 0), (i ≤ m ≤ n),
(5) deg xm ≤ max(sαm − 1, 0), (1 ≤ m < i),

which are easily proved inductively by noting that

deg(pk−αmamxm) ≤ s(k − αm) + (s − 1) + deg(xm). (23)

The while loop eventually terminates, for at the end of each loop (after k has been
incremented) we have produced a unimodular matrix V (λ) such that

A(λ)V (λ) = E(λ)D(λ), D = diag[pα1 , . . . , pαi−1 , pk, . . . , pk

︸ ︷︷ ︸
rk−1 times

]. (24)

8

Hence, the algorithm must terminate before k exceeds the algebraic multiplicity µ of p(λ)
in ∆(λ):

k ≤
(∑i=1

m=1 αi

)
+ (n + 1 − i)k ≤ µ, ∆(λ) = f(λ)p(λ)µ, p ∤ f. (25)

In fact, we can avoid the last iteration of the while loop if we change the test to

while
[(∑i−1

m=1 αi

)
+ (n + 1 − i)k

]
< µ

and change the last line to

β = k, αm = k, (i ≤ m ≤ n), rβ−1 = n + 1 − i, rβ = 0.

We know the remaining columns of V will be accepted without having to compute the
remaining yi or check them for linear independence. When the algorithm terminates, we
will have found a unimodular matrix V (λ) satisfying (49) such that the columns of

Ė(λ) = [ẏ1(λ), . . . , ẏn(λ)]

are linearly independent in M/pM over R/pR. By Lemma 8, p(λ) ∤ det[E(λ)], as required.
To implement the algorithm, we must find an efficient way to compute yi, test for

linear independence in M/pM , find the coefficients am to cancel the leading term of the
residual, and update xi. Motivated by the construction in [16], we interpret the loop over
j in Algorithm 1 as a single nullspace calculation.

Let us define Rl = {a ∈ R : deg a < l} and Ml = Rn
l , both viewed as vector spaces

over K. Then we have an isomorphism Λ of vector spaces over K

Λ : (Ms)
k → Msk,

Λ(x(0); . . . ; x(k−1)) = x(0) + px(1) + · · · + pk−1x(k−1).
(26)

At times it will be convenient to identify Rls with R/plR and Mls with M/plM to obtain
ring and module structures for these spaces. We also expand

A = A(0) + pA(1) + · · · + pqA(q), (27)

where A(j) is an n × n matrix with entries in Rs. By properties (4) and (5) of the while

loop, we may write xi = Λ(x
(0)
i ; . . . ; x

(α)
i) with α = max(k − 1, 0). Since Axi is divisible

by pk in Algorithm 1, we have

yi = (Axi/pk)% p =
k∑

j=0

[
A(k−j)x

(j)
i

]
% p +

k−1∑

j=0

[
A(k−1−j)x

(j)
i

]
/p. (28)

The matrix-vector multiplications A(k−j)x
(j)
i are done in the ring R (leading to vector

polynomials of degree ≤ 2s − 2) before the quotient and remainder are taken. When
k = 0, the second sum should be omitted, and when k ≥ 1, the j = k term in the first

sum can be dropped since x
(k)
i = 0 in the algorithm. In practice, we test all the active

columns ẏi, . . . , ẏn ∈ M/pM for linear independence of their predecessors simultaneously
as follows. If k = 0 we have

[y1, . . . , yn] = A(0). (29)

Otherwise k ≥ 1 and we have computed the matrix Xk−1 with columns
(
x

(0)
m ; . . . ; x

(k−1)
m

)

for i ≤ m ≤ n such that Λ(Xk−1) (acting column by column) represents the last rk−1

columns of V (λ) at the start of the while loop in Algorithm 1. Then by (28),

[yi, . . . , yn] = [A(k), . . . , A(1)]Xk−1% p + [A(k−1), . . . , A(0)]Xk−1/p. (30)

9

As before, the matrix multiplications are done in the ring R before the quotient and
remainder are computed to obtain the components of ym, which belong to Rs. To test
for linear independence, we find the kernel of the matrix Ȧk, where

Ak =

{
A(0), k = 0,[
Ak−1 , [yi, . . . , yn]

]
, 1 ≤ k ≤ n.

(31)

To compute this kernel, we find the reduced row-echelon form of Ȧk using Gauss-Jordan
elimination over the field R/pR. Multiplication and division in R/pR are easily carried
out using the companion matrix of p. If we define

γ : Ks → R/pR, γ
(
x(0); . . . ; x(s−1)

)
= x(0) + · · · + λs−1x(s−1) + pR, (32)

we can pull back the field structure of R/pR to Ks to obtain

xy = γ(x)(S)y = [x(0)I + x(1)S + · · · + x(s−1)Ss−1]y = [y, Sy, . . . , Ss−1y]x,

x/y = [y, Sy, . . . , Ss−1y]−1x, x =
(
x(0); . . . ; x(s−1)

)
∈ Ks, (33)

where

S =




0 . . . 0 −a0

1
. . .

...
...

. . . 0 −as−2

0 1 −as−1




, p(λ) = a0 + a1λ + · · · + as−1λ
s−1 + λs (34)

is the companion matrix of p, and represents multiplication by λ in R/pR. The matrix
[y, Sy, . . . , Ss−1y] is invertible when y 6= 0 since a non-trivial vector x in its kernel would
lead to non-zero polynomials γ(x), γ(y) ∈ R/pR whose product is zero (mod p), which is
impossible as p is irreducible.

The reduced row-echelon form of Ȧk can be interpreted as a tableau telling which
columns of Ȧk are linearly independent of their predecessors (the accepted columns), and
also giving the linear combination of previously accepted columns that will annihilate a
linearly dependent column. On the first iteration (with k = 0), step ⋆ in Algorithm 1 will
build up the matrix

X0 = null(Ȧ0), (35)

where null(·) is the standard algorithm for computing a basis for the nullspace of a matrix
from the reduced row-echelon form (followed by a truncation to replace the elements in
R/pR of this nullspace matrix with their representatives in Rs). But rather than rotating
these columns to the end as in Algorithm 1, we now append the corresponding yi to the
end of Ak−1 to form Ak for k ≥ 1. The “dead” columns left behind (not accepted,
not active) serve only as placeholders, causing the resulting matrices Ak to be nested.
The leading columns of rref(Ȧk) will then coincide with rref(Ȧk−1), and the nullspace
matrices will also be nested:

X0 V1 · · · Vk−1 Vk

0 [U1; 0] · · · [Uk−1; 0] Uk


 := null(Ȧk). (36)

Note that Ak is n × (n + Rk−1), where

R−1 = 0, Rk = r0 + · · · + rk = dim ker Ȧk, (k ≥ 0). (37)

10

We also see that X0 is n × r0, Vk is n × rk, and Uk is rk−1 × rk. Since the dimension of
the kernel cannot increase by more than the number of columns added,

rk ≤ rk−1, (k ≥ 0). (38)

If column i of Ȧk is linearly dependent on its predecessors, the coefficients am used in
step ⋆ of Algorithm 1 are precisely the (truncations of the) coefficients that appear in
column i of rref(Ȧk). The corresponding null vector (i.e. column of [Vk; Uk]) contains
the negatives of these coefficients in the rows corresponding to the previously accepted
columns of Ȧk, followed by a 1 in row i; see Figure 2. Thus, in step ⋆, if k ≥ 1 and we

write xm = Λ
(
x

(0)
m ; . . . ; x

(α)
m

)
with α = max(αm − 1, 0), the update

x
(new)
i = x

(old)
i −

i−1∑

m=1

pk−αmamxm, amxm % pαm+1 = Λ
(
z(0); . . . ; z(αm)

)
,

z(j) =





(
amx

(0)
m

)
% p, j = 0,(

amx
(j)
m

)
% p +

(
amx

(j−1)
m

)
/p, 1 ≤ j < αm,(

amx
(j−1)
m

)
/p, j = αm and αm > 0,

is equivalent to

Xk =

{[
ιk(X−1) , ιk−1ρ(X0) , . . . , ι0ρ(Xk−1)

]

Vk

Uk



}

% p

+
([

ιk(X0) , . . . , ι1(Xk−1)
]
Uk

)
/p,

(39)

where ι, ρ : (Ms)
l → (Ms)

l+1 act column by column, padding them with zeros:

ι(x) = (0; x), ρ(x) = (x; 0), x ∈ (Ms)
l, 0 ∈ Ms. (40)

Here ΛιΛ−1 is multiplication by p, which embeds Mls
∼= M/plM in M(l+1)s

∼= M/pl+1M
as a module over R, while ρ is an embedding of vector spaces over K (but not an R-
module morphism). If we define the matrices X0 = X0 and

Xk = [ι(Xk−1), Xk] =




0nk×r0

X0


 ,


0n(k−1)×r1

X1


 , . . . ,

(
Xk

)
 , (k ≥ 1), (41)

then (39) simply becomes

Xk = [(Xk−1Uk)% p; Vk] + ι(Xk−1Uk)/p. (42)

As in (30) above, the matrix multiplications are done in the ring R before the quotient
and remainder are computed to obtain Xk. Finally, we line up the columns of Xk−1 with
the last rk−1 columns of Ȧk and extract (i.e. accept) columns of Xk−1 that correspond
to new, linearly independent columns of Ȧk. We denote the matrix of extracted columns
by X̃k−1. At the completion of the algorithm, the unimodular matrix V (λ) that puts
A(λ) in local Smith form is given by

V (λ) =
[
Λ(X̃−1), . . . , Λ(X̃β−1)

]
. (43)

The final algorithm is presented in Figure 3. In the steps marked •, we can avoid re-
computing the reduced row-echelon form of the first n + Rk−2 columns of Ȧk by storing

11

Fig. 2. The reduced row-echelon form of Ȧβ contains all the information necessary to construct

V (λ) = [Λ(eX
−1), . . . , Λ(eXs−1)]. An arrow from a column [v; u] of [Vk; Uk] indicates that the

vector
`
[(Xk−1u)% p; v] + ι(Xk−1u)/p

´
should be added to eXk.

Algorithm 2. (Local smith form, final version)

k = 0

A0 = A(0)

X0 = X0 = null(Ȧ0)
r0 = R0 = num cols(X0) (number of columns)

X̃−1 = [ej1 , . . . , ejn−r0
], (columns ji of rref(Ȧ0) start new rows)

while Rk < µ (µ = algebraic multiplicity of p)
k = k + 1

• Ak =
(
Ak−1 ,

[
A(k), . . . , A(1)

]
Xk−1% p +

[
A(k−1), . . . , A(0)

]
Xk−1/p

)

• [Vk; Uk] = new columns of null(Ȧk) beyond those of null(Ȧk−1)
rk = num cols(Uk), (Uk is Rk−1 × rk)
Rk = Rk−1 + rk

Xk = [(Xk−1Uk)% p; Vk] + ι(Xk−1Uk)/p (Xk is n(k + 1) × rk)
Xk = [ι(Xk−1), Xk] (Xk is n(k + 1) × Rk)

X̃k−1 = Xk−1(:, [j1, . . . , jrk−1−rk
]), (columns n + Rk−2 + ji of

end while rref(Ȧk) start new rows)
β = k + 1 (maximal Jordan chain length)

X̃β−1 = Xβ−1

V (λ) =
[
Λ(X̃−1), . . . , Λ(X̃β−1)

]

Fig. 3. Algorithm for computing a unimodular local Smith form.

the sequence of Gauss-Jordan transformations [4] that reduced Ȧk−1 to row-echelon form.
To compute [Vk; Uk], we need only apply these transformations to the new columns of Ȧk

and then proceed with the row-reduction algorithm on these final columns. Also, if A0 is
large and sparse, rather than reducing to row-echelon form, one could find kernels using

12

an LU factorization designed to handle singular matrices. This would allow the use of

graph theory (clique analysis) to choose pivots in the Gaussian elimination procedure to

minimize fill-in. We also note that if ∆(λ) contains only one irreducible factor, the local

Smith form is a (global) Smith form of A(λ); steps 2 and 3 can be skipped in that case.

3.2. Algorithms for the Extended GCD Problem

The extended Euclidean algorithm is widely applied to solve the extended GCD prob-

lem for two polynomials in K[λ], e.g. gcdex in Maple. The algorithm requires O(P (d) log d)

arithmetic operations in K to solve the problem, where f1 and f2 both have degrees no

greater than d and P (d) is the number of field operations in K required to multiply two

polynomials of degree d− 1 in K[λ]. Using standard polynomial multiplication, we have

P (d) = d2, while a fast algorithm [10] uses P (d) = d(log d)(log log d).

The extended GCD problem (16) for more than two polynomials can be solved by

applying the extended Euclidean algorithm to all the polynomials simultaneously; see

below. A variant of this approach is to focus on the two lowest degree polynomials until

one is reduced to zero; we then repeat until all but one is zero. In practice, we use the

function ‘hermite’ in Maple.

Suppose we have n polynomials f1, . . . , fn in K[λ]. We find fi 6= 0 with the lowest

degree. Each fj with j 6= i can then be written as

fj − qjfi = rj ,

where qj is the quotient of fj divided by fi, and rj is the remainder. Hence, we have




1 −q1

. . .
...

1

...
. . .

−qn 1







f1

...

fi

...

fn




=




r1

...

fi

...

rn




.

Denote the matrix by Q1. We repeat this procedure on (r1; . . . ; fi; . . . ; rn) until there is

only one nonzero entry in the vector, and we obtain

QkQk−1 . . . Q1




f1

...

fn




=




0
...

r

...

0




. (44)

The row of QkQk−1 . . .Q1 with the same index as r divided by the leading coefficient of

r gives a solution of the extended GCD problem.

13

3.3. From Local to Global (Step 2)

Now that we have a local Smith form (18) for every irreducible factor pj(λ) of ∆(λ),
we can apply the algorithm in Section 3.2 to obtain a family of polynomials {gj(λ)}l

j=1

with deg(gj(λ)) < sjκjn, where sj = deg(pj), such that

l∑

j=1

[
gj(λ)

l∏

k=1,k 6=j

pk(λ)κkn

]
= 1, (45)

where pj(λ)κjn is the last entry in the diagonal matrix of the local Smith form at pj(λ).
The integers κjn are positive. We define a matrix polynomial Bn(λ) via

Bn(λ) =

l∑

j=1

[
gj(λ)Vj(λ)

l∏

k 6=j

pk(λ)κkn

]
. (46)

The main result of this section is stated as follows.

Proposition 11. The matrix polynomial Bn(λ) defined by (46) has two properties:
(1) Let bni(λ) be the ith column vector polynomial of Bn(λ). Then A(λ)bni(λ) is divis-

ible by di(λ), where di(λ) =
∏l

j=1 pj(λ)κji is the ith diagonal entry in D(λ) of the
Smith form.

(2) det[Bn(λ)] is not divisible by pj(λ) for j = 1, . . . , l.

Proof. 1. Let vji(λ) be the ith column of Vj(λ). Then A(λ)vji(λ) is divisible by pj(λ)κji

and

bni(λ) =

l∑

j=1

[l∏

k 6=j

pk(λ)κkn

]
gj(λ)vji(λ).

Since κjn ≥ κji for 1 ≤ i ≤ n and 1 ≤ j ≤ l, A(λ)bni(λ) is divisible by di(λ).
2. The local Smith form construction ensures that pj(λ) ∤ det[Vj(λ)] for each 1 ≤ j ≤ l.

Equation (45) modulo pj(λ) shows that pj(λ) ∤ gj(λ). By definition,

det[Bn(λ)] = det
([

bn1(λ) , . . . , bnn(λ)
])

= det
([

bni(λ)
]n
i=1

)

= det

([l∑

j′=1

(l∏

k 6=j′

pk(λ)κkn

)
gj′(λ)vj′i(λ)

]n

i=1

)
.

Each term in the sum is divisible by pj(λ) except j′ = j. Thus, by multi-linearity,

det[Bn(λ)] % pj(λ) =

([l∏

k 6=j

pk(λ)κkn

]n[
gj(λ)

]n
det
[
Vj(λ)

]
)

% pj(λ) 6= 0,

as claimed. 2

Remark 12. It is possible for det[Bn(λ)] to be non-constant; however, its irreducible
factors will be distinct from p1(λ), . . . , pl(λ).

Remark 13. Rather than building Bn(λ) as a linear combination (46), we may form
Bn(λ) with columns

bni(λ) =

l∑

j=1

[l∏

k 6=j

pk(λ)max(κki,1)

]
gij(λ)vji(λ), (1 ≤ i ≤ n),

14

where {gij}
l
j=1 solves the extended GCD problem

l∑

j=1

[
gij(λ)

l∏

k 6=j

pk(λ)max(κki,1)

]
= 1.

The two properties proved above also hold for this definition of Bn(λ). This modification
can significantly reduce the size of the coefficients in the computation when there is a
wide range of Jordan chain lengths. But if κji only changes slightly for 1 ≤ i ≤ n, this
change will not significantly affect the running time as solving for the local Smith forms
is the most expensive step in our method.

3.4. Construction of Unimodular Matrix Polynomials (Step 3)

Given a vector polynomial [f1(λ); . . . ; fn(λ)] ∈ K[λ]n, we can use the extended GCD
algorithm to find a unimodular matrix Q(λ) such that Q(λ)f(λ) = [0; . . . ; 0; r(λ)], where
r = gcd(f1, . . . , fn). Explicitly, we apply one additional transformation Qk+1 to (44) to
swap row i with row n, where i is the index of r in (44), and define Q = Qk+1Qk . . . Q1.
We apply this procedure to the last column of Bn(λ) and define Vn(λ) = Q(λ)−1. The
resulting matrix

Bn−1(λ) := Vn(λ)−1Bn(λ)

is zero above the main diagonal in column n. We then apply this procedure to the first
n − 1 components of column n − 1 of Bn−1(λ) to get a new Q(λ), and define

Vn−1(λ) =




0

Q(λ)−1
...

0
0 · · · 0 1


 . (47)

It follows that Bn−2(λ) := Vn−1(λ)−1Bn−1(λ) is zero above the main diagonal in columns
n−1 and n. Continuing in this fashion, we obtain unimodular matrices Vn(λ), . . . , V2(λ)
such that

A(λ)Bn(λ) = A(λ)Vn(λ) · · · V2(λ)︸ ︷︷ ︸
V (λ)

V2(λ)−1 · · ·Vn(λ)−1Bn(λ)︸ ︷︷ ︸
Bn−1(λ)

= A(λ)V (λ)B1(λ),

where V (λ) is unimodular, B1(λ) is lower triangular, and

det[B1(λ)] = ± det[Bn(λ)]. (48)

The matrix V (λ) puts A(λ) in Smith form:

Proposition 14. There is a unimodular matrix polynomial E(λ) such that

A(λ)V (λ) = E(λ)D(λ), (49)

where D(λ) is of the form (3).

Proof. Let rmi denote the entry of B1(λ) in the mth row and ith column. Define yi(λ)
and zi(λ) to be the ith columns of A(λ)V (λ) and A(λ)V (λ)B1(λ), respectively, so that

zi(λ) = yi(λ)rii(λ) +
n∑

m=i+1

ym(λ)rmi(λ), (1 ≤ i ≤ n). (50)

15

By Proposition 11, zi(λ) is divisible by di(λ) for 1 ≤ i ≤ n and pj(λ) ∤ det[B1(λ)] for
1 ≤ j ≤ l. It follows that the diagonal entries rii(λ) of B1(λ) are relatively prime to each
of the di(λ). As dn(λ) divides yn(λ)rnn(λ) and is relatively prime to rnn(λ), it divides
yn(λ) alone. Now suppose 1 ≤ i < n and we have shown that dm(λ) divides ym(λ) for
i < m ≤ n. Then since di(λ) divides dm(λ) for m > i and rii(λ) is relatively prime to
di(λ), we conclude from (50) that di(λ) divides yi(λ). By induction, di(λ) divides yi(λ) for
1 ≤ i ≤ n. Thus, there is a matrix polynomial E(λ) such that (49) holds. Because V (λ)
is unimodular and det[A(λ)] = const · det[D(λ)], it follows that E(λ) is also unimodular,
as claimed. 2

4. Performance Comparison

In this section ,we compare our algorithm to Villard’s method with good condition-
ing [14], which is another deterministic sequential method for computing Smith forms
with multipliers, and to ‘smith’ in Maple. All the algorithms are implemented in exact
arithmetic using Matlab’s symbolic toolbox using the variant of Algorithm 2 given in
Appendix A.

To evaluate the performance of these methods, we generate several groups of diagonal
matrices D(λ) over Q and multiply them on each side by unimodular matrices of the form
L(λ)U(λ)P , where P is a permutation matrix, L is unit lower triangular, and U is unit
upper triangular, both with off diagonal entries of the form λ− i with i ∈ {−10, . . . , 10}
a random integer. Each process is repeated five times for each D(λ) and the median
running time is recorded.

We use several parameters in the comparison, including the size n of the square matrix
A(λ), the bound d of the degrees of the entries in A(λ), the number l of irreducible factors
in det(A(λ)), and the largest order κjn. The computation of local Smith forms turns out
to be the most expensive part of our method. Therefore, the running time mostly depends
on n, l and κjn. The cost of Villard’s method with good condition is a function of n and
d, as well as the size of the coefficients, which we do not discuss in this paper.

Our first group of test matrices Dn(λ) are of the form

Dn(λ) = diag[1, . . . , 1, λ, λ(λ − 1), λ2(λ − 1), λ2(λ − 1)2],

where n increases starting from 4. Hence, we have d = 8, l = 2, and κ1n = κ2n = 2 all
fixed. (The unimodular matrices in the construction of A each have degree 2). A com-
parison of the various algorithms is plotted in Figure 4. Since we apply the algorithm
using the symbolic toolbox in Matlab, the time of computing the leading terms of the
expansion A(λ) = A(0) +A(1)pj +A(2)p2

j + · · · is far larger than it should be (due appar-
ently to storage of arbitrary precision numbers as strings rather than maple objects). In
Figure 4, we plot both the actual running time (×) and a corrected running time (+) in
which the timer is turned off for the computation of the coefficients A(j). The slopes of
the lines give the exponent α in t(n) = Cnα. We did not implement the re-use strategy
for computing the reduced row-echelon form of Ak by storing the Gauss-Jordan trans-
formations used to obtain rref(Ak−1), and then continuing with only the new columns
of Ak. This is because the built-in function rref is much faster than can be achieved by
a user defined matlab code for the same purpose; therefore, our running times could be
reduced by a factor of about 2 in this test if we had access to the internal rref code.

16

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

10
3

matrix size n

ru
nn

in
g

tim
e

(in
 s

ec
on

ds
)

slopes of lines (from left to right):
 8.6, 5.6, 2.9

’smith’ in Maple

Villard’s method with
good conditioning

our algorithm

Fig. 4. Running time vs. matrix size n.

10
0

10
1

10
2

10
ï�

10
0

10
1

10
2

10
3

number of roots l of det(A(h))

ru
n

n
in

g
 t
im

e
 (

in
 s

e
c
o

n
d

s
)

corrected running time

Villard’s method

slope of the line: 2.3

of our algorithm

actual running time

of our algorithm

Fig. 5. Running time vs. number of roots l of det(A(λ)).

For the second test, we use test matrices Dk(λ) of size 9 × 9, where

Dk(λ) = diag[1, . . . , 1,
∏k

j=1(λ − j)], (k = 1, 2, . . .).

In other words, n = 9, l = k, d = k + 4 and κjn = 1 for 1 ≤ j ≤ k. We omit ‘smith’
in Maple for this case, which is much slower than the other two methods. The running
time of Villard’s method does not directly rely on l but increases as d grows. Also, note
that the actual running time of our algorithm is slightly slower than Villard’s method,

17

10
0

10
1

10
2

10
−1

10
0

10
1

10
2

maximal length κ
1n

 of Jordan chains

ru
nn

in
g

tim
e

(in
 s

ec
on

ds
)

slope of the line: 2.3

Villard’s method with
good conditioning

our algorithm

Fig. 6. Running time vs. κ1n, the maximal Jordan chain length.

but the bulk of the time is spent computing the leading coefficients in the expansion of
A, which is an artifact of using Matlab’s symbolic toolbox to access Maple.

In the third test, we use 9 × 9 test matrices Dk(λ) of the form

Dk(λ) = diag[1, . . . , 1, λk], (k = 1, 2, . . .),

with n = 9, l = 1, κ1n = k and d = k + 4. The results are shown in Figure 6. As in
the second test, Villard’s method has an increasing cost as d grows. If we had access to
the internal rref code, the re-use strategy for computing rref(Ak) from rref(Ak−1) would
decrease the running time of our algorithm by a factor of nearly κ1n, i.e. the slope in
Figure 6 would decrease by one.

As a final test, we use matrices Dn(λ) similar to those in the first test, but with
irreducible polynomials of higher degree. Specifically, we define

Dn(λ) = diag[1, . . . , 1, p1, p1p2, p
2
1p2, p

2
1p

2
2],

where p1 = λ2 + λ + 1, p2 = λ4 + λ3 + λ2 + 1, κ1n = 2, κ2n = 2, d = 16 and n increases,
starting at 4. The running times of the various algorithms are plotted in Figure 7.

4.1. Discussion

The key idea in our algorithm is that it is much less expensive to compute local
Smith forms than global Smith forms through a sequence of elementary row and column
operations. This is because (1) row reduction over R/pR in Algorithm 2 (or over K in
the variant of Appendix A) is less expensive than computing extended GCDs over R; (2)
the size of the rational numbers that occur in the algorithm remain smaller (as we only
deal with the leading terms of A in an expansion in powers of p rather than with all of
A); and (3) each column of V (λ) in a local Smith form only has to be processed once
for each power of p in the corresponding diagonal entry of D(λ). Once the local Smith
forms are known, we combine them to form a (global) multiplier V (λ) for A(λ). This

18

10
0

10
1

10
2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

matrix size n

ru
nn

in
g

tim
e

(in
 s

ec
on

ds
)

slopes of lines (from left to right):
 8.1, 6.1, 3.1

’smith’ in maple

Villiard’s method

our algorithm

Fig. 7. Running time vs. matrix size, deg pj(λ) > 1.

last step does involve triangularization of Bn(λ) via the extended GCD algorithm, but

this is less time consuming in most cases than performing elementary row and column

operations on A(λ) to obtain D(λ). This is due to the fact that we only have to apply

row operations to Bn(λ) (as the columns are already correctly ordered), and because

the leading columns of Bn(λ) tend to be sparse (as they consist of a superposition of

local Smith forms, whose initial columns X−1 are a subset of the columns of the identity

matrix). Sparsity is not used explicitly in our code, but it does reduce the work required
to compute the extended GCD of a column.

The obvious drawback of our algorithm is that we have to compute a local Smith

form for each irreducible factor of ∆(λ) separately, while much of the work in deciding

whether to accept a column in Algorithm 1 can be done for all the irreducible factors

simultaneously by using extended GCDs. In our numerical experiments, it appears that

in most cases, the benefit of computing local Smith forms outweighs the fact that there

are several of them to compute.

A. Alternative Version of Algorithm 2

In this section we present an algebraic framework for local Smith forms of matrix

polynomials that shows the connection between Algorithm 2 and the construction of

canonical systems of Jordan chains presented in [16]. This leads to a variant of the

algorithm in which row-reduction is done in the field K rather than in R/pR.

Suppose R is a principal ideal domain and p is a prime in R. M defined via M = Rn

is a free R-module with a free basis {(1, 0, . . . , 0), . . . , (0, . . . , 1)}. Suppose A : M → M
is a R-module morphism. We define submodules

Nk =
{
x ∈ M : Ax is divisible by pk+1

}
, (k ≥ −1). (A.1)

19

Then Nk is a free submodule of M by the structure theorem [5] for finitely generated
modules over a principal ideal domain. (The structure theorem states that if M is a free
module over a principal ideal domain R, then every submodule of M is free.) The rank
of Nk is also n, as pk+1M ⊂ Nk ⊂ M . Note that N−1 = M and

Nk ⊂ Nk−1, (k ≥ 0), (A.2)

Nk ∩ pM = pNk−1, (k ≥ 0). (A.3)

Next we define the spaces Wk via

Wk = Nk/pNk−1, (k ≥ −1), (A.4)

where N−2 := M so that W−1 = M/pM . By (A.3), the action of R/pR on Wk is well-
defined, i.e. Wk is a vector space over this field. Let us denote the canonical projection
M → M/pM by π. Note that π(pNk−1) = 0, so π is well-defined from Wk to M/pM for
k ≥ −1. It is also injective as xp ∈ Nk ⇒ x ∈ Nk−1, by (A.3). Thus, cosets {ẋ1, . . . , ẋm}
are linearly independent in Wk iff {π(x1), . . . , π(xm)} are linearly independent in M/pM .
We define the integers

rk = dimension of Wk over R/pR, (k ≥ −1) (A.5)

and note that r−1 = n. We also observe that the truncation operator

id : Wk+1 → Wk : (x + pNk) 7→ (x + pNk−1), (k ≥ −1) (A.6)

is well-defined (pNk ⊂ pNk−1) and injective (x ∈ Nk+1 and x ∈ pNk−1 ⇒ x ∈ pNk, due
to (A.3)). We may therefore consider Wk+1 to be a subspace of Wk for k ≥ −1, and have
the inequalities

rk+1 ≤ rk, (k ≥ −1). (A.7)

The case r0 = 0 is not interesting (as Nk = pk+1M for k ≥ −1), so we assume that
r0 > 0. When R = K[λ], which we assume from now on, this is equivalent to assuming
that det[A(λ)] is divisible by p(λ). We also assume that rk eventually decreases to zero,
say

rk = 0 ⇔ k ≥ β, β := maximal Jordan chain length. (A.8)

This is equivalent to assuming det[A(λ)] is not identically zero.
The while loop of the algorithm in Algorithm 1 is a systematic procedure for computing

a basis
{xj + pNk−2}

n−rk

j=n−rk−1+1 (k ≥ 0) (A.9)

for a complement W̃k−1 of Wk in Wk−1:

W̃k−1 ⊕ Wk = Wk−1. (A.10)

Any basis for any complement W̃k−1 would also lead to a local Smith form; however,
the one we chose is particularly easy to compute and has the added benefit of yielding
a unimodular multiplier V . The interpretation of the rk as dimensions of the spaces Wk

shows that the integers

αj = k, (n − rk−1 < j ≤ n − rk) (A.11)

in the local Smith form are independent of the choices of complements W̃k−1 and bases

(A.9) for W̃k−1. Using induction on k, it is easy to show that for any such choices, the
vectors

{(Axj/pαj) + pM}n−rk

j=1 (A.12)

20

are linearly independent in M/pM ; otherwise, a linear combination of the form ⋆ in

Algorithm 1 can be found which belongs to W̃k−1 ∩ Wk, a contradiction.
We now wish to find a convenient representation for these spaces suitable for compu-

tation. Since pk+1M ⊂ pNk−1, we have the isomorphism

Nk/pNk−1
∼= (Nk/pk+1M)/(pNk−1/pk+1M), (A.13)

i.e.
Wk

∼= Wk/pWk−1, (k ≥ 0), Wk := Nk/pk+1M, (k ≥ −1). (A.14)

Although the quotient Wk/pWk−1 is a vector space over R/pR, the spaces Wk and
M/pk+1M are only modules over R/pk+1R. They are, however, vector spaces over K,
which is useful for developing a variant of Algorithm 2 in which row reduction is done
over K instead of R/pR. Treating M/pk+1M as a vector space over K, A(λ) induces a
linear operator Ak on M/pk+1M with kernel

Wk = ker Ak, (k ≥ −1). (A.15)

We also define

Rk =
dimension of Wk over K

s
, (k ≥ −1, s = deg p) (A.16)

so that R−1 = 0 and
Rk = r0 + · · · + rk, (k ≥ 0), (A.17)

where we used W0 = W0 together with (A.14) and the fact that as a vector space over
K, dimWk = srk. By (A.11), rk−1 − rk = #{j : αj = k}, so

Rβ−1 = r0 + · · · + rs−1 = (r−1 − r0)0 + (r0 − r1)1 + · · · + (rβ−1 − rβ)β

= α1 + · · · + αn = µ = algebraic multiplicity of p,
(A.18)

where we used Theorem 7 in the last step. We also note that ν := r0 = R0 = s−1 dimker(A0)
can be interpreted as the geometric multiplicity of p.

Equations (A.14) and (A.15) reduce the problem of computing Jordan chains to that of
finding kernels of the linear operators Ak over K. If we use the vector space isomorphism
Λ : Ksn(k+1) → M/pk+1M given by

Λ(x(0); . . . ; x(k)) = γ(x(0)) + pγ(x(1)) + · · · + pkγ(x(k)) + pk+1M,

γ(x(j,1,0); x(j,1,1); . . . ; x(j,n,s−1)) =




x(j,1,0) + λx(j,1,1) + · · · + λs−1x(j,1,s−1)

· · ·

x(j,n,0) + λx(j,n,1) + · · · + λs−1x(j,n,s−1)




to represent elements of M/pk+1M , then multiplication by λ in M/pk+1M viewed as a
module becomes the following linear operator on Ksn(k+1) viewed as a vector space over
K:

Sk =




I ⊗ S 0 0 0

I ⊗ Z I ⊗ S 0 0

0
. . .

. . . 0

0 0 I ⊗ Z I ⊗ S




, S as in (34), Z =




0 0 1
. . . 0

0 0


. (A.19)

21

Here Sk is a (k + 1) × (k + 1) block matrix, I ⊗ S is a Kronecker product of matrices,
S and Z are s × s matrices, and I is n × n. Multiplication by λm is represented by Sm

k ,
which has a similar block structure to Sk, but with S replaced by Sm and Z replaced by

Tm =

{
0 m = 0∑m−1

l=0 SlZSm−1−l, 1 ≤ m ≤ s − 1.
(A.20)

Thus, if we expand

A(λ) = A(0) + pA(1) + · · · + pqA(q), A(j) = A(j,0) + · · · + λs−1A(j,s−1), (A.21)

the matrix Ak representing A(λ) is given by

Ak =




A0 0 · · · 0

A1 A0 · · · 0

· · · · · · · · · · · ·

Ak Ak−1 · · · A0




, (A.22)

where

Aj =

{∑s−1
m=0 A(0,m) ⊗ Sm, r = 0,∑s−1
m=0

[
A(j,m) ⊗ Sm + A(j−1,m) ⊗ Tm

]
, r ≥ 1.

(A.23)

The terms
∑

m A(j,m)⊗Sm and
∑

m A(j−1,m) ⊗Tm compute the remainder and quotient
in (28) if we set y = Ak · (x(0); . . . ; x(k)) and compare y(k) to the formula for yi =
(Axi/pk)% p in (28).

Next we seek an efficient method of computing a basis matrix Xk for the nullspace
Wk = kerAk. Note that we are now working over the field K rather than R/pR as we did
in Section 3. Suppose k ≥ 1 and we have computed Xk−1. The first k blocks of equations
in AkXk = 0 imply there are matrices Uk and Vk such that Xk = [Xk−1Uk; Vk], while
the last block of equations is

Ak︷ ︸︸ ︷
(

Ak . . . A0

)

 0 Xk−1

Isn×sn 0




Vk

Uk




︸ ︷︷ ︸
Xk

=
(

0sn×sRk

)
. (A.24)

Thus, we can build up the matrices Xk recursively via X0 = null(A0) and

Ak =
(
A0 , [Ak, . . . , A1]Xk−1

)
, [Vk; Uk] = null(Ak), Xk = [Xk−1Uk; Vk].

Here null(·) is the standard algorithm for computing a basis for the nullspace of a matrix
by reducing it to row-echelon. As the first sn columns of A1 coincide with A0 := A0, and
since X0 = null(A0), there are matrices V1 and U1 such that


V1

U1


 =


X0 V1

0 U1


 , X1 =

[
ι(X0), X1], X1 = [X0U1; V1], (A.25)

where ι : Ksnl → Ksn(l+1) represents multiplication by p from M/plM to M/pl+1M :

ι(x(0); . . . ; x(l−1)) = (0; x(0); . . . ; x(l−1)), x(j), 0 ∈ Ksn. (A.26)

22

But now the first s(n + R0) columns of A2 coincide with A1, so there are matrices V2

and U2 such that

V2

U2


 =


 V1 V2

[U1; 0] U2


 , X2 =

[
ι(X1), X2], X2 = [X1U2; V2]. (A.27)

Continuing in this fashion, we find that the first s(n + Rk−2) columns of Ak coincide
with Ak−1, and therefore Vk, Uk and Xk have the form


Vk

Uk


 =


X0 V1 · · · Vk−1 Vk

0 [U1; 0] · · · [Uk−1; 0] Uk


 , X0 = X0, (A.28)

Xk =




0snk×sr0

X0


 ,


0sn(k−1)×sr1

X1


 , . . . ,

(
Xk

)
 , Xk = [Xk−1Uk; Vk].

By construction, Xk = [ι(Xk−1), Xk] is a basis for Wk when k ≥ 1; it follows that
Xk + ι(Wk−1) is a basis for Wk when Wk is viewed as a vector space over K. We define
X0 = X0 and X−1 = Isn×sn to obtain bases for W0 and W−1 as well.

But we actually want a basis for Wk viewed as a vector space over R/pR rather than
K. Fortunately, all the matrices in this construction are manipulated in s × s blocks;
everywhere we have an entry in R/pR in the construction of Section 3, we now have an
s × s block with entries in K. This is because the matrix Ak commutes with Sk (since
A(λ) commutes with multiplication by λ). So if we find a vector x ∈ ker Ak, the vectors

{x , Skx , . . . , Ss−1
k x} (A.29)

will also belong to ker Ak. These vectors are guaranteed to be linearly independent, for
otherwise the vectors

{x(j,i) , Sx(j,i) , . . . , Ss−1x(j,i)} (A.30)

would be linearly dependent in Ks, where x(j,i,m) is the first non-zero entry of x. This is
impossible since p is irreducible; see (33) above. As a consequence, in the row-reduction
processes, if we partition Ak into groups of s columns, either all s columns will be
linearly dependent on their predecessors, or each of them will start a new row in rref(Ak);
together they contribute a block identity matrix Is×s to rref(Ak). It follows that the block
nullspace matrices [Vk; Uk] will have supercolumns (groups of s columns) that terminate

in identity matrices Is×s, and that the submatrix X
(0)
k consisting of the first ns rows of

Xk also has supercolumns that terminate with Is×s. The structure is entirely analogous
to the one in Figure 2 above, with s×s blocks replacing the entries of the matrices shown.
The following four conditions then ensure that successive columns in a supercolumn of Xk

are related to each other via (A.29): (1) the terminal identity blocks in X
(0)
k contain the

only non-zero entries of their respective rows; (2) if x is a column of Xk and x(0,i) ∈ Ks

is one of the columns of a terminal identity block, the (Skx)(0,i) = Sx(0,i) is the next
column of Is×s (with the 1 shifted down a slot). (3) the columns of Xk are a basis for
ker Ak; (4) if x is a column of Xk, then Skx also belongs to ker Ak. Thus, to extract a
basis for Wk over R/pR, we simply extract the first column of each supercolumn of Xk.
The result is identical to that of Algorithm 2. In practice, this version of the algorithm
(working over K) is easier to implement, but the other version (over R/pR) should be
about s times faster as the cost of multiplying two elements of R/pR is O(s2) while the

23

cost of multiplying two s × s matrices is O(s3). The results in Figure 7 were computed
as described in this appendix (over K = Q).

References

[1] F.R. Gantmacher. Matrix Theory, volume 1. Chelsea Publishing Company, 1960.
[2] I. Gohberg, M. A. Kaashoek, and F. van Schagen. On the local theory of regular

analytic matrix functions. Linear Algebra Appl., 182:9–25, 1993.
[3] I. Gohberg, P. Lancaster, and L. Rodman. Matrix Polynomials. Academic Press,

New York, 1982.
[4] Gene H. Golub and Charles F. Van Loan. Matrix Computations. John Hopkins

University Press, Baltimore, 1996.
[5] Thomas W. Hungerford. Algebra. Springer, New York, 1996.
[6] E. Kaltonfen, M.S. Krishnamoorthy, and B.D. Saunders. Fast parallel computation

of Hermite and Smith forms of polynomial matrices. SIAM J. Alg. Disc. Meth.,
8(4):683–690, 1987.

[7] E. Kaltonfen, M.S. Krishnamoorthy, and B.D. Saunders. Parallel algorithms for
matrix normal forms. Linear Algebra and its Applications, 136:189–208, 1990.

[8] R. Kannan. Solving systems of linear equations over polynomials. Theoretical Com-
puter Science, 39:69–88, 1985.

[9] S. Labhalla, H. Lombardi, and R. Marlin. Algorithmes de calcul de la rduction de
Hermite d’une matrice coefficients polynomiaux. Theoretical Computer Science,
161:69–92, 1996.

[10] A. Storjohann. Computation of Hermite and Smith normal forms of matrices. 1994.
[11] A. Storjohann and G. Labahn. A fast Las Vegas algorithm for computing the Smith

normal form of a polynomial matrix. Linear Algebra and its Applications, 253:155–
173, 1997.

[12] G. Villard. Computation of the Smith normal form of polynomial matrices. In
International Symposium on Symbolic and Algebraic Computation, Kiev, Ukraine,
pages 209–217. ACM Press, 1993.

[13] G. Villard. Fast parallel computation of the Smith normal form of polynomial
matrices. In International Symposium on Symbolic and Algebraic Computation,
Oxford, UK, pages 312–317. ACM Press, 1994.

[14] G. Villard. Generalized subresultants for computing the Smith normal form of
polynomial patrices. J. Symbolic Computation, 20:269–286, 1995.

[15] G. Villard. Fast parallel algorithms for matrix reduction to normal forms. Appli.
Alg. Eng. Comm. Comp., 8(6):511–538, 1997.

[16] J. Wilkening. An algorithm for computing Jordan chains and inverting analytic
matrix functions. Linear Algebra Appl., 427/1:6–25, 2007.

24

	Introduction
	Preliminaries
	Smith Forms
	Jordan Chains
	Bézout's Identity

	An Algorithm for Computing a (global) Smith Form
	A Local Smith Form Algorithm (Step 1)
	Algorithms for the Extended GCD Problem
	From Local to Global (Step 2)
	Construction of Unimodular Matrix Polynomials (Step 3)

	Performance Comparison
	Discussion

	Alternative Version of Algorithm 2

